Generalised trapezoidal rules with error involving bounds of the nth derivative

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

the effects of error correction methods on pronunciation accuracy

هدف از انجام این تحقیق مشخص کردن موثرترین متد اصلاح خطا بر روی دقت آهنگ و تاکید تلفظ کلمه در زبان انگلیسی بود. این تحقیق با پیاده کردن چهار متد ارائه اصلاح خطا در چهار گروه، سه گروه آزمایشی و یک گروه تحت کنترل، انجام شد که گروه های فوق الذکر شامل دانشجویان سطح بالای متوسط کتاب اول passages بودند. گروه اول شامل 15، دوم 14، سوم 15 و آخرین 16 دانشجو بودند. دوره مربوطه به مدت 10 هفته ادامه یافت و د...

15 صفحه اول

Hybrid Gauss-Trapezoidal Quadrature Rules

A new class of quadrature rules for the integration of both regular and singular functions is constructed and analyzed. For each rule the quadrature weights are positive and the class includes rules of arbitrarily high-order convergence. The quadratures result from alterations to the trapezoidal rule, in which a small number of nodes and weights at the ends of the integration interval are repla...

متن کامل

Error bounds for interpolatory quadrature rules on the unit circle

For the construction of an interpolatory integration rule on the unit circle T with n nodes by means of the Laurent polynomials as basis functions for the approximation, we have at our disposal two nonnegative integers pn and qn, pn + qn = n − 1, which determine the subspace of basis functions. The quadrature rule will integrate correctly any function from this subspace. In this paper upper bou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2002

ISSN: 1331-4343

DOI: 10.7153/mia-05-44